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Abstract—Digital and mobile health technologies offer7
promising solutions for smoking detection and cessation.8
This scoping review examines the current state of research9
and development in this field, encompassing smartphone10
applications, wearable devices, and sensor-based systems.11
We analyzed 49 studies published between 2019 and 202312
from PubMed and ACM Digital Library, focusing on technol-13
ogy features, outcomes, and evaluation methods. Wearable14
sensors and smartphone apps show potential in combat-15
ing smoking addiction and improving quit rates. Motion16
sensors for hand-to-mouth gesture detection achieve high17
accuracy in controlled settings but face challenges in real-18
world applications. Machine learning models and wireless19
signal detection techniques yield encouraging results but20
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require further refinement. Smartphone apps provide per- 21
sonalized plans and progress tracking, though most rely 22
on manual logging and lack rigorous scientific evaluation. 23
Our findings suggest that digital health technologies could 24
significantly enhance smoking cessation efforts. However, 25
more robust evaluation methods and integration of sensor 26
data with machine learning are needed to improve usabil- 27
ity and effectiveness. Continued research and innovation 28
in this field are crucial for developing reliable, practical 29
solutions and integrating these technologies into clinical 30
programs. 31

Index Terms—Smoking detection, health technologies, 32
smoking cessation, medical mobile apps, technology 33
review, wearable devices. 34

I. INTRODUCTION 35

TOBACCO smoking remains a leading cause of preventable 36

illness and premature death worldwide, despite declining 37

prevalence rates [1], [2]. In the U.K., smoking-related deaths 38

accounted for 16% of all deaths in 2016 [1]. The economic 39

impact of smoking is substantial, with global annual costs ex- 40

ceeding US$500 billion [3]. Smoking behavior is maintained by 41

nicotine’s reinforcing properties and the distant nature of health 42

consequences [2]. Effective interventions to reduce smoking 43

prevalence include tax increases, social marketing, and brief ad- 44

vice from health professionals [2]. Workplace smoking cessation 45

programs have shown cost-effectiveness, with benefit-cost ratios 46

up to 8.75 and significant employer cost savings [3]. While vari- 47

ous cessation measures have proven effective and cost-effective, 48

challenges remain in addressing persistent inequalities in smok- 49

ing rates among certain groups, such as manual workers and 50

individuals with serious mental illness [1]. 51

Over the past decade, we have witnessed a rapid prolifera- 52

tion of portable devices that have become central to our daily 53

lives [4], [5]. Notably, smartphone technology, coupled with 54

ever-expanding bandwidth connectivity and the growth of social 55

networks, has fundamentally transformed the way we conduct 56

nearly all our daily activities, ushering in an era of pervasive 57

digital technology [4], [6], [7], [8]. In addition to smartphones, 58

there has been a significant uptick in the adoption of various 59

wearable devices and home/office installations [9], [10], [11], 60

[12], all interconnected and controllable through simple smart- 61

phone applications. This interconnected device ecosystem is 62
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geared towards enhancing the intelligence of our devices and63

environments, leading to the emergence of concepts like smart64

homes and smart offices [13], [14], [15], [16]. Crucially, these65

wearable and remote devices are equipped with specific sensors66

that can capture data related to individuals or their surround-67

ings, which can then be shared and processed collaboratively68

among different devices [17], [18], [19]. The goal is to derive69

insights and create added value for the user experience, offering70

opportunities for both data capture and user support. A novel71

and innovative application of smart device technology lies in its72

potential to assist with smoking cessation treatments [20], [21],73

[22]. In the realm of smoking detection and cessation technolo-74

gies, there is a recognized issue that these technologies are not75

fully optimized for real-life scenarios. While existing technolo-76

gies have demonstrated potential, their performance in real-life77

scenarios continues to pose a challenge. The present work is a78

scoping review updating a previously published work [17] with79

the aim of conducting a comparative examination of various80

smartphone applications (apps), wearable technologies designed81

for automatic smoking detection, and other instances where82

technology can play a role in supporting smoking cessation83

interventions.84

In this paper, we aim to provide an overview and analysis of85

the current state-of-the-art technology focusing on automated86

smoking detection and smoking cessation technologies. An87

automatic smoking detection technology is a solution designed88

to ascertain the number of cigarettes smoked by an individual89

within a specified observation period [16], [23]. This encom-90

passes approaches that necessitate minimal user intervention91

(i.e., automatic), encompassing all stages involved in detecting92

smoking events, from collecting sensory data to making the final93

inference, as opposed to solutions reliant on self-reporting by94

participants (e.g., diary apps). In the following sections, the95

most relevant apps and technologies designed to help people96

stop smoking are shown and compared. A summary of the97

revised solutions to help users quit smoking is presented in the98

Discussion.99

II. METHODS100

A. Research Question101

This scoping review was conducted following the Pre-102

ferred Reporting Items for Systematic Reviews and Meta-103

Analyses (PRISMA) Extension for Scoping Reviews (Suppl.104

Mater.1) [24]. The aim was to synthesize and explore the current105

applications of digital devices for automatically detecting the106

use of cigarettes. Additionally, this review will also report on107

the use of smoking cessation smartphone applications, which108

represent a significant stride in leveraging technology to aid in109

smoking cessation. Our study, structured following the PICO110

format [25], focused on individuals who smoke (P), examining111

the application of digital health technologies, such as smart-112

phone apps, wearable devices, sensors, and machine learning113

techniques, to detect smoking events and support smoking114

cessation (I). These innovative approaches were compared to115

traditional methods, including manual self-monitoring, stan-116

dard behavioral therapies, or the absence of intervention (C). The117

outcomes of interest included improvements in the automatic 118

detection of smoking events, such as recall rates and accuracy, 119

increased smoking cessation rates, usability and acceptance of 120

these technologies, and their successful integration into clinical 121

practice (O). 122

B. Systematic Search of Patents 123

A systematic search was conducted on Google Patents to 124

identify patents related to smoking cessation systems and tech- 125

nologies. Google Patents was chosen as the search engine 126

due to its comprehensive coverage of patent databases from 127

multiple jurisdictions, including the United States Patent and 128

Trademark Office (USPTO), European Patent Office (EPO), and 129

World Intellectual Property Organization (WIPO). The search 130

strategy was designed to be broad to capture as many relevant 131

patents as possible. The search terms used were combinations 132

of the following keywords: (“smoking cessation system” OR 133

“automated smoking detection”) AND (“patent” OR “appli- 134

cation” OR “method”). The search, unrestricted by date or 135

jurisdiction, screened all results for relevance based on title 136

and abstract. Patents detailing smoking cessation systems or 137

technologies were further analyzed. Additional relevant patents 138

were identified through screening the reference lists of these 139

patents. Data extracted from each patent, including title, number, 140

filing and publication dates, inventors, assignees, abstract, and 141

claims, provided an overview of the latest technology in auto- 142

mated smoking detection and cessation systems. The systematic 143

search results were incorporated into the PRISMA flow diagram 144

(Fig. 1), visually representing the search and selection process 145

for transparency and reproducibility of the study. 146

C. Literature Search 147

An updated search for smoking detection technologies and 148

smoking cessation applications was conducted in December 149

2023 using PubMed and ACM Digital Library databases. The 150

following search strategy was used: (“smoking” AND “detec- 151

tion system”) OR (“smoking” AND “sensor”) OR ((“smoking” 152

AND “detection system”) OR (“smoking” AND “sensor”)) 153

OR ((“smoking cessation”) AND (“application” OR “app” OR 154

“smartphone app”)). The full search strategy is provided in 155

Suppl. Mater. 2. All the studies published since 2019, year 156

of publication of the previous review, were included. There 157

were no limitations based on language. The reference lists of 158

the included studies underwent additional scrutiny to identify 159

additional potential studies. We manually searched key peer- 160

reviewed scientific journals in the field of tobacco research 161

(specifically, Nicotine & Tobacco Research, Tobacco Control, 162

Carcinogenesis, Health Education Research, and Contributions 163

to Tobacco and Nicotine Research). Two authors of the review 164

independently examined and chose studies from the conducted 165

searches. Any disagreements were resolved through discussion 166

or, if necessary, with the involvement of a third reviewer. 167

1) Web-Based Search for Smoking Cessation Applications: 168

For smoking cessation applications, an additional web-based 169

search was carried out. The selection process was conducted as 170

follows: we performed multiple searches using Bing, Google, 171
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Fig. 1. PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) flow diagram
representing the article selection process in accordance with the guidelines for updates of systematic reviews [24].

and DuckDuckGo search engines using the query “quit smoking172

apps.” From the initial search results, we excluded entries related173

to sponsored links promoting specific apps. Instead, we focused174

on links associated with blogs dedicated to health topics (e.g.,175

healthline.com). From this resulting list of apps, we chose those176

with high average user ratings in the Android and iOS app177

stores (i.e., ratings of 4/5 or higher). Then, a further literature178

search was conducted on Google Scholar combining the names179

of app identified via web as follows: (“name of the application”180

AND “application”). This additional step, which was performed181

for each application, enabled verification of which apps were182

clinically assessed.183

D. Eligibility Criteria184

The eligibility criteria for the inclusion of studies in this185

scoping review were as follows:186
� Studies that reported on development, evaluation, or appli-187

cation of a digital or mobile health technology for smoking188

detection or cessation.189
� Technology that involved smartphone, smartwatch, wear-190

able device, or other sensor-based system.191
� Studies in the form of original research articles (includ-192

ing randomized controlled trials), cross-sectional, cohorts,193

brief reports, case reports, case series communications,194

methodologies, and methods.195

� Studies published in peer-reviewed journals or conference 196

proceedings. 197
� Studies published between 2019 and 2023. 198

E. Exclusion Criteria 199

The exclusion criteria were the following: 200
� Studies that did not focus on smoking detection or cessa- 201

tion as a primary or secondary outcome. 202
� Technology that did not involve sensor or motion data 203

collection or analysis. 204
� Studies not written in English. 205
� Apps that were not available in English. 206
� Studies in the forms of abstract, preprint, editorial, com- 207

mentary, letter, or review. 208
� Studies published before 2019 (except those included in 209

the previous version of this review). 210

F. Data Extraction 211

Two reviewers independently performed data extraction. Any 212

inconsistencies were resolved through discussion or with the 213

assistance of a third reviewer. In our analysis, we categorized the 214

reviewed technologies into two main groups: smoking detection 215

technologies and smoking cessation applications. 216

1) Smoking Detection Technologies: For each study, the fol- 217

lowing elements were systematically extracted and compiled 218



4 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

in study tables: product, technology, operating system (OS),219

goal, participants, hours, recall, F-score and Area Under Curve220

(AUC).221

2) Smoking Cessation Applications: For each study, the fol-222

lowing items were extracted and adapted into appropriate tables:223

product, technology, mobile operating systems, scientific evalu-224

ation (Sc. Eval.), public availability, and list price. Within each225

category, we also highlighted whether smoking cessation appli-226

cations have been supported by scientific articles and whether227

these have undergone assessment, for example, on a clinical228

level. Smartphone applications were divided into two subsec-229

tions based on whether they have been subjected to clinical230

assessment or not, and therefore at least one phase of testing231

on real samples.232

III. RESULTS233

A. Study Characteristics234

The search yielded a total of 37 distinct documents, to be235

added to 12 studies retrieved from the previous version of236

the review (6 related to smoking detection technologies, and237

6 related to smoking cessation applications). Given that the238

utilization of wearable devices for smoking detection is rel-239

atively recent, most of the located works pertain to products240

currently undergoing evaluation or still in the experimental241

prototype phase. The article selection process is reported in the242

PRISMA-ScR, compiled in accordance with the guidelines for243

updates of systematic reviews (Fig. 1). The full list of included244

studies is reported in Table I. A total of 26 studies were identified245

for smoke detection technologies and 20 for smoking cessation246

applications, 2 of which were subsequently added to suggestions247

obtained through the review process. Furthermore, 3 studies248

related to generic smoking detection were included. The main249

characteristics of the included studies are explained below. The250

remaining 60 references cited throughout this paper provide251

contextual background, theoretical framing, or supplementary252

discussion but were excluded from formal analysis to maintain253

focus on the core research questions. This approach aligns with254

scoping review methodologies, which prioritize depth on key255

themes while acknowledging broader scholarly discourse.256

B. Technologies for Smoking Events Detection257

The technologies discussed in this paragraph aim to detect258

smoking events in real-time, eliminating manual tracking. Some259

are market-ready, others are under evaluation. They typically260

use a wearable device and smartphone app to identify smoking-261

related movements like hand-to-mouth actions.262

The development of smoking detection systems has un-263

dergone significant advancements, particularly in leveraging264

wearable technologies and machine learning. Lopez-Meyer265

et al. [26], [27] laid early foundations using respiratory induc-266

tive plethysmography (RIP) sensors and wrist-worn devices to267

detect smoking gestures (see Fig. 2). Their approach utilized268

Support Vector Machines (SVM) and threshold-based algo-269

rithms, achieving recall rates of 80–90%. However, their system270

was limited to controlled settings, requiring offline processing271

Fig. 2. Sensors of the system depicted in Lopez-Meyer et al.’s
work [26].

and providing minimal adaptability to free-living environments. 272

Moving forward, systems like SmokeBeat [28] enhanced de- 273

tection by incorporating accelerometers and gyroscopes into 274

commercial smartwatches. SmokeBeat combined probabilistic 275

models with gesture segmentation, yielding precision and recall 276

rates exceeding 85%. Similarly, RisQ [29] leveraged Conditional 277

Random Fields to sequence smoking gestures in free-living con- 278

ditions, while StopWatch [30] adopted Random Forest classifiers 279

to distinguish smoking from other activities. These systems 280

demonstrated the potential for low-cost, user-friendly platforms, 281

achieving operational accuracies between 70–90%. 282

Post-2020 studies demonstrated remarkable advances in 283

smoking behavior detection through increasingly sophisticated 284

methodological approaches. Senyurek and colleagues [31] de- 285

veloped a wearable system integrating respiratory inductive 286

plethysmography (RIP) and inertial measurement unit (IMU) 287

sensors, employing a hybrid deep learning framework combin- 288

ing convolutional neural networks (CNN) and long short-term 289

memory (LSTM) networks. Their research utilized a compre- 290

hensive dataset evaluated through leave-one-subject-out cross- 291

validation, achieving an F1-score of 78%. Similarly, Kirmizis 292

et al. [32] employed an artificial neural network with convolu- 293

tional and recurrent layers, utilizing the Smoking Event Detec- 294

tion (SED) and Smoking Event Detection Free-Living (SED- 295

FL) datasets. Their two-step methodology leveraged smart- 296

watch data to detect individual puffs and localize smoking 297

sessions, achieving impressive weighted accuracies of 0.968 298

and F1-scores of 0.878. Agac et al. [33] advanced sensor fu- 299

sion methodologies, utilizing accelerometers and gyroscopes 300

from smartwatches (LG Watch R, LG Watch Urbane or Sony 301

Watch 3) and smartphones (Samsung Galaxy S2 or S3). Their 302

framework incorporated user-specific features, such as body di- 303

mensions, into a Random Forest classifier to achieve 83% recall 304

in distinguishing smoking gestures from other hand-to-mouth 305

activities. They validated the model using a comprehensive 306

dataset collected under free-living conditions, demonstrating 307

the importance of personalization in wearable systems. More 308

recent advancements, such as Hnoohom et al.’s [34], advanced 309
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TABLE I
SUMMARY OF THE STUDIES INCLUDED IN THIS SCOPING REVIEW, LISTED IN THE ORDER THEY APPEAR IN THE TEXT, REFLECTING THEIR RELEVANCE TO

DIFFERENT TOPICS AND SECTIONS OF THE ARTICLE

smoking gesture detection through a sophisticated ResNetSE310

framework, integrating deep residual networks with attention311

mechanisms. By analyzing the UT-Smoke dataset collected312

from 11 volunteers over three months, the researchers com-313

pared their approach against five baseline models (CNN, LSTM,314

BiLSTM, GRU, and BiGRU; see Fig. 3). The ResNetSE model315

demonstrated exceptional performance, consistently achieving316

top accuracy and F1-scores of 98.65%, 98.39%, and 98.63%317

across multiple scenarios, highlighting its superior capabilities318

in real-time gesture recognition.319

Thakur and colleagues [35] developed a robust activity recog-320

nition framework using a 6-axis inertial measurement unit (IMU)321

sensor, exploring multi-class classification models including322

Logistic Regression, k-Nearest Neighbor, Adaptive Boosting, 323

Random Forest, Support Vector Machine, and Decision Tree. 324

Maguire et al. [21] introduced a particularly innovative mul- 325

timodal system combining a smartwatch (with accelerometers 326

and gyroscopes) and a wearable finger sensor, and an An- 327

droid app (Fig. 4), using a TensorFlow Lite model for activity 328

classification. Their smartwatch-only system achieved accuracy 329

improvements from 75.8% to 85.5% by integrating the finger 330

sensor. Furthermore, Sharma et al. [22] advanced the field with 331

a microcontroller-based system employing a convolution-based 332

network and Neural Architecture Search (NAS) to develop cus- 333

tom Deep Neural Network (DNN) models. Mukhopadhyay’s 334

research [36] utilized reinforcement learning to optimize CNN 335
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Fig. 3. ResNetSE model included in Hnoohom and colleagues’ work [34].

TABLE II
SUMMARY OF THE SMOKING DETECTION TECHNOLOGIES DESCRIBED IN THIS ARTICLE

Fig. 4. Diagram of smoking cessation technology described by
Maguire and colleagues [21].

architectures, achieving a puff detection F1-score of 0.81, while336

Alharbi et al. [37] introduced SmokeMon, a chest-worn thermal-337

sensing system that demonstrated high-precision smoking event338

detection across laboratory and real-world environments.339

A summary of these studies and their recall rates can be seen340

in Table II, while a summary of the smartwatches employed in341

them can be found in Table III.342

TABLE III
SUMMARY OF THE COMMERCIALLY AVAILABLE-TO-PUBLIC SMARTWATCH

EMPLOYED IN THE STUDIES INCLUDED IN THIS SCOPING REVIEW

C. Smoking Cessation Applications 343

The applications delineated in this section are founded upon 344

the annotation of smoking behaviors, accomplishments, and in- 345

stances of craving. These applications have attained exceedingly 346

elevated mean feedback ratings from users and have experienced 347

substantial rates of downloads within the application markets. 348

1) Clinically Assessed Applications: Smoking cessation ap- 349

plications highlights a robust and innovative landscape of digital 350

interventions, each employing unique strategies to support users 351

in their quitting journeys. Through scientific third-party evalua- 352

tion or endorsement, these applications demonstrate a commit- 353

ment to integrating evidence-based methodologies, personalized 354
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features, and advanced technologies to enhance user engagement355

and efficacy.356

Chen et al. [38] showcased an Android-based system combin-357

ing wearable sensors and tailored quitting plans, emphasizing358

personalization through demographic and behavioral data. This359

approach aligns closely with mindfulness-based strategies, such360

as the RAIN method [39], to aid in managing cravings, while361

integrating supportive messaging for both users and their social362

networks. Pivot, a widely evaluated program, stands out for its363

incorporation of an FDA-cleared breath sensor that offers real-364

time physiological feedback, alongside a comprehensive app365

providing customized lessons, progress tracking, and coaching.366

Its compatibility with iOS and Android platforms, coupled with367

multiple clinical validations [40], [41], [42], [43], underscores368

its scalability and effectiveness. Similarly, CureApp Smoking369

Cessation (CASC) integrates behavioral and pharmacological370

therapies with a mobile exhaled CO checker, demonstrating371

significant improvements in abstinence rates and reductions in372

nicotine dependence compared to control groups [44]. This app373

exemplifies the potential of hybrid digital and pharmacological374

approaches.375

Apps like SmartStop and Craving To Quit! focus on combin-376

ing technology with behavioral science. SmartStop leverages377

a programmable nicotine patch synchronized with a smart-378

phone app to address peak craving periods, while Craving379

To Quit! integrates cognitive behavioral therapy (CBT) and380

mindfulness practices to disrupt smoking patterns [45], [46].381

These interventions highlight the interconnected physiological382

and psychological dimensions of smoking cessation. By exam-383

ining how stress compromises prefrontal cortex function and384

increases smoking vulnerability, researchers illuminate the neu-385

rological underpinnings of addiction [47]. Mindfulness therapy386

offers a promising approach to modulating desire and cigarette387

use, revealing the complex mechanisms that sustain tobacco388

dependency [48].389

Apps employing gamification and interactive features, such390

as Clickotine, Smoke Free, Kwit, and Quit Genius, have demon-391

strated effectiveness in enhancing self-efficacy and motivation392

through rewards systems, progress tracking, and engaging chal-393

lenges [49], [50], [51], [52], [53], [54], [55], [56]. In this regard,394

QuitSTART exemplifies another facet of smoking cessation395

support, combining progress tracking with strategies to manage396

cravings and negative moods. The app employs user data to397

offer personalized challenges, advice, and motivation, ensuring398

an interactive and engaging cessation journey [57]. Gamified399

elements appear particularly influential in fostering user engage-400

ment and addressing cognitive factors critical to quitting.401

Notably, Acceptance and Commitment Therapy (ACT) has402

emerged as a recurrent theme, underpinning the design of 2Mor-403

rowQuit, SmartQuit, and iCanQuit [12], [58], [59]. These apps404

leverage ACT principles [60] to build psychological flexibility,405

mitigate cravings, and promote mindfulness, with promising406

outcomes in abstinence rates and behavior modification. Finally,407

Quit Genius and other CBT-based apps demonstrate a holis-408

tic approach, addressing not only smoking cessation but also409

broader addiction challenges. Their integration of personalized410

plans, extensive CBT exercises, and supportive communities411

reflects a comprehensive strategy aimed at sustaining long-term 412

change [61], [62]. 413

2) Applications Not Yet Clinically Assessed: Several pub- 414

licly available apps aid in smoking cessation and do not, yet, 415

provide clinical assessment. The LIVESTRONG MyQuit Coach 416

and Quit Smoking: Cessation Nation offer goal-setting and 417

community support. Quit Now! provides motivational messages 418

and supports multiple languages. The Quit Smoking with An- 419

drew Johnson app uses self-hypnosis, while Butt Out provides 420

insights for a smoke-free lifestyle. Get Rich or Die Smoking 421

motivates through monetary incentives, and SmokeFree—Quit 422

Smoking Slowly offers options to quit abruptly or gradually. The 423

Quit Smoking NOW—Max Kirsten app uses hypnosis and NLP 424

techniques, and the Quit Tracker: Stop Smoking app displays 425

financial savings and health benefits. Quit It Lite helps users set 426

personalized goals, and Quit Smoking Hypnosis offers daily 427

hypnosis sessions. Quitter’s Circle supports smoking cessa- 428

tion with resources and a quit fund tool. EasyQuit provides 429

a personalized quit plan and a distraction game. Flamy offers 430

personalized plans and rewards, and Smoking Log helps reduce 431

cigarette consumption. All these apps are available on iOS and 432

Android, with some offering premium features. This subsection 433

provided a brief summary of some smartphone apps designed 434

for smoking cessation that lack published peer-review. A more 435

complete list can be found in Table IV. 436

3) Smartphone Apps Limitations: Engagement with smart- 437

phone apps, particularly those designed for smoking cessa- 438

tion, faces several limitations. One key issue is the lack of 439

personalization and adaptability to the user’s changing needs 440

and contexts, which can lead to decreased engagement over 441

time [63], [64]. Moreover, many apps do not adequately as- 442

sess the user’s readiness to quit smoking or arrange follow-up, 443

which are crucial for maintaining engagement [65]. Improving 444

engagement could involve incorporating more user-centered 445

design principles, such as real-time messaging with support 446

networks and reducing barriers to access [63]. Furthermore, 447

the use of assessment tools like the Mobile Application Rating 448

Scale (MARS) can provide valuable insights into app quality, 449

including engagement, functionality, aesthetics, and information 450

quality [66], [67], [68]. However, it’s important to note that com- 451

mercialization of apps does not necessarily imply widespread 452

availability to the general public. For instance, the Pivot App 453

operates on a B2B model [69], [70], [71], which may limit its 454

accessibility to only certain organizations or groups. Therefore, 455

while commercial apps may be widely marketed, their actual 456

accessibility may be more limited [72], [73]. 457

4) Apps Usability: The usability and convenience of the de- 458

scribed applications play a crucial role. While a generic ap- 459

plication may achieve high performance in terms of smoking 460

detection, it could prove inconvenient to use. A fundamental dis- 461

tinction exists between apps that provide information in a stand- 462

alone manner, without the need for additional devices, and those 463

that operate with multimodal information from multiple sources. 464

Table IV illustrates that most of the described applications do 465

not require additional devices, making them user-friendly tools. 466

However, it is evident that applications utilizing supplementary 467

information, such as SmartStop, Pivot, and CureApp Smoking 468
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TABLE IV
SUMMARY OF THE QUIT SMOKING APPLICATIONS DESCRIBED IN THIS STUDY, INCLUDING THOSE WITH “FREEMIUM” MODELS, WHERE THE APP IS FREE TO

DOWNLOAD AND USE, BUT OFFERS ADDITIONAL PAID FEATURES OR CONTENT

Cessation, achieve higher performance, following the principle469

that more data equates to greater knowledge and, consequently,470

better performance. On the other hand, however, the use of471

additional devices is in some cases an unfeasible and in others an472

inconvenience that discourages their long-term use. Therefore,473

although it will always be easier to use a stand-alone application474

and simpler to use a multimodal system, the correct trade-off475

depends on the scenarios where it is to be used.476

D. Nicotine Detection in Smoke Detection Systems477

Tai et al. [74] introduced the “s-band,” a wearable nicotine478

sensor employing a gold nanodendrite-modified working elec-479

trode and a self-assembled monolayer, enabling high sensitivity480

and stability in detecting nicotine from human sweat. Validated481

in both buffer solutions and real-world samples from smokers,482

the sensor reliably identified nicotine levels consistent with483

cigarette nicotine content, highlighting its potential for public484

health and personalized medicine applications. Rani et al. [75]485

advanced the field with a metal-organic nanotube (MONT)486

sensor capable of selectively detecting nicotine in cigarette487

smoke at concentrations below 23.3 µ M. The MONT’s porous488

structure, combined with rapid response times (20 seconds)489

and sunlight stability at room temperature, allows for efficient490

nicotine detection through visible light-driven binding to metal491

ions. Its reusability after heating at 110◦C under vacuum en-492

hances cost-effectiveness and practicality across gaseous and493

solution-phase applications. Meanwhile, Rahman et al. [76]494

developed a wireless, battery-free, skin-mounted nicotine sensor495

using vanadium dioxide (VO2) technology to detect nicotine496

vapor from e-cigarettes. By leveraging electron transfer between497

nicotine molecules and the VO2 surface, this sensor achieves498

precise vaporized nicotine detection, supported by density499

functional theory (DFT) calculations and compositional analy- 500

sis. Its lightweight design facilitates continuous monitoring for 501

both personal and environmental use. 502

E. Non-Wearable Smoking Detection: Deep Learning, 503

Wireless Signals, Trials, Dataset, and Gesture Detection 504

1) Smoking Detection Through Vision: Recent advance- 505

ments in non-wearable smoking detection have made signif- 506

icant strides, leveraging deep learning techniques and novel 507

system designs to enhance accuracy and efficiency. Macalisang 508

et al. [77] developed a smoking detection system using a dataset 509

of 300 images and the YOLOv3 model, achieving high train- 510

ing and validation accuracies of 98.10% and 98.22%, though 511

challenges with detection angles and video quality remained, 512

with accuracies varying from 63% to 98% in real-world testing. 513

Wei et al. [78] expanded this work by building a larger dataset 514

of 9,424 smoking images and employing data augmentation 515

techniques such as Mosaic enhancement, which improved gener- 516

alization. Their model, optimized with the DIoU_Loss function 517

and adjusted learning rates, showed enhanced performance, par- 518

ticularly in Average Precision (AP) and Intersection over Union 519

(IoU), underscoring the model’s robustness. Zhang et al. [79] 520

introduced CBAM-Tiny, a lightweight attention mechanism de- 521

signed to improve small target detection by refining spatial 522

features with global pooling and utilizing a custom DenseBlock 523

module for better gradient flow. Their model achieved an mAP 524

of 86.32% and a frame rate of 55 frames per second, demon- 525

strating both precision and speed, which is crucial for real-time 526

applications. Finally, Chong [80] developed a real-time system 527

utilizing the Real-Time Streaming Protocol (RTSP) to capture 528

video frames and process them through a custom model trained 529

on the Tsinghua-Tencent 100 K dataset. This system employed 530
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Non-Maximum Suppression (NMS) and a context information531

correlation algorithm to improve detection accuracy and pro-532

cessing speed, outperforming models like YOLOv3, SSD, and533

RetinaNet.534

2) Detection of Non-Cigarette Smoke: Gaur et al.’s re-535

view [81] explores smoking detection, discussing challenges536

with smoke obscuring data and the features used in algorithms.537

They highlight the need for dataset testing and advanced meth-538

ods like quaternionic wavelet features, Kalman filtering, and539

transmission-based detection. Xu and Xu [82] combined static540

and dynamic features for AI-based detection. Saponara et al. [83]541

used deep learning for real-time fire and smoking detection,542

leveraging the NVIDIA Jetson Nano’s CPU (Central Processing543

Unit) and GPU to parallelize neural networks. They focused on544

the YOLOv2 detector, achieving a detection rate of 21 FPS.545

Gu et al.’s study [84] evaluates a Deep Dual-Channel Convolu-546

tional Neural Network (DCNN) for smoking detection, which547

outperforms other models in terms of stability and efficiency.548

The DCNN surpasses processing times of other models and549

excels at extracting detailed and basic features. These studies550

collectively usher in a new era in algorithm-driven fire and551

smoking detection.552

3) Smoking Detection Using Deep Learning: Jeong and553

Ha [85] explored a deep learning-based system for smoking de-554

tection using CCTV footage, integrating OpenPose-based skele-555

ton analysis with specialized hardware for enhanced recognition.556

Their system preprocesses image data to recognize smoking557

behavior, coupling it with sensor-equipped devices to detect558

smoke components, triggering warnings for non-smoking areas.559

A neural network built with TensorFlow and Keras, optimized560

with MobileNetV2, achieves 75% accuracy for smoking im-561

ages and 70% for non-smoking images, offering a promising562

real-time smoking detection framework. On a different front,563

Lai et al. [86] focused on smoking cessation by leveraging data564

from a program in northern Taiwan spanning from 2010 to 2018.565

Using machine learning models like artificial neural networks566

(ANN), support vector machines (SVM), random forests (RF),567

and others, they aimed to predict smoking cessation probabilities568

based on factors such as patient characteristics, smoking habits,569

and nicotine dependence scores. The ANN model outperformed570

others with an accuracy of 0.640 and an ROC value of 0.660,571

offering a valuable predictive tool for smoking cessation pro-572

grams. Both studies contribute to the understanding of smoking573

behavior and cessation, with Jeong and Ha’s work enhancing574

real-time detection through image processing and hardware575

integration, while Lai et al.’s research provides insights into576

machine learning’s potential in predicting successful smoking577

cessation.578

4) Human Behavior Detection With Wireless Signals: Song579

et al. [10] developed a contactless AI technology using Channel580

State Information (CSI) from wireless signals to detect human581

motion, focusing on distinguishing between sitting and standing.582

They used USRP devices to collect CSI data from volunteers and583

analyzed it using MATLAB and scikit-learn. Machine learn-584

ing models were built and tested, with Random Forest (RF)585

performing well and K-Nearest Neighbors (KNN) being less586

effective. An ensemble classifier improved performance, and the587

CSI dataset outperformed a benchmark dataset. The model was 588

effective in practical applications, with local tests providing GUI 589

predictions and real-time tests offering CSI amplitude graphs 590

and web interface predictions. 591

5) Smoking Detection Trials: The smoking detection trials 592

conducted across various studies demonstrate the potential for 593

integrating real-time, personalized interventions in smoking 594

cessation. Battalio et al. [87] utilized a Just-in-Time Adaptive 595

Intervention (JITAI) model to help smokers manage stress, a key 596

trigger for relapse. The study incorporated multiple sensors, in- 597

cluding chestbands and wristbands, to gather physiological and 598

behavioral data for real-time analysis. By using stress-detection 599

algorithms, the system provided individualized treatment op- 600

tions, such as stress management prompts, to prevent smoking 601

episodes during high-stress moments. In a similar vein, Hernan- 602

dez et al. [88] focused on the feasibility and effectiveness of 603

mindfulness-based interventions delivered via wearable sensors 604

that tracked physiological indicators associated with negative 605

affect, self-regulation, and smoking behaviors. Using deep learn- 606

ing techniques, the study personalized interventions based on 607

real-time data, offering a more dynamic and tailored approach to 608

smoking cessation. Horvath et al. [89] explored the effectiveness 609

of a smartband-based system that provided automatic smoking 610

detection and mindfulness interventions, including the RAIN 611

technique, which was tailored to help participants recognize and 612

manage cravings. In this trial, data collected from the wearable 613

devices were used to assess treatment fidelity, adherence, and 614

user satisfaction, with smoking behavior and abstinence rates 615

also being tracked. 616

6) Gesture Detection: Gesture detection has evolved 617

through various approaches, each contributing to the 618

accuracy and efficiency of activity recognition systems. 619

Hnoohom et al. [90] developed an innovative Human Activity 620

Recognition (HAR) workflow incorporating data collection 621

from wearables, pre-processing, model training, and assessment. 622

They introduced the Att-BiLSTM model, which integrated a 623

BiLSTM layer, an attention layer, and a fully connected layer, 624

demonstrating superior performance on the WISDM-HARB 625

Dataset. This model achieved higher accuracy and F1-scores 626

when combining wrist-worn accelerometer and gyroscope 627

data with a 20-second window size, evaluated using metrics 628

such as F-Score, Recall, Precision, and confusion matrices. In 629

contrast, Agac et al. [91] focused on a dynamically adaptable 630

parameter selection method with the Conawact algorithm for 631

activity recognition, which tailored sensor parameters based 632

on activity complexity. This dynamic approach significantly 633

improved the F1-score by 7% for complex activities and 634

by 6% overall, while also reducing energy consumption by 635

38%, maintaining memory size, and lowering CPU usage 636

by 15%. Their method proved to be particularly effective 637

for activities like “smoking in a group” and “drinking while 638

sitting down,” showing improvements of over 20%. Meanwhile, 639

Patel et al. [92] explored 3D gesture recognition through 640

wearables, emphasizing the integration of sensor data from 641

smartwatches and armbands with image/video data. Their 642

work aimed at improving human-machine collaboration, 643

with a focus on gesture and pattern recognition to enhance 644
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interaction accuracy and privacy. Although they addressed the645

complexity of both hardware and software, their study provided646

a comprehensive gesture-based system designed to streamline647

interaction, reduce system complexity, and enhance efficiency.648

Together, these studies highlight significant advancements in649

gesture detection, with improvements in both accuracy and650

computational efficiency, contributing to more intuitive and651

effective human-machine interactions.652

IV. DISCUSSION653

A. Final Remarks654

In this paper, we outlined key strategies for smoking cessation655

and explored the associated technological advancements. These656

solutions primarily harness smartphone technology, supported657

by recent scientific studies like those by Whittaker et al. [93] and658

Haskins et al. [94]. Imtiaz et al. [95] also conducted a review on659

wearable technology monitoring of cigarette smoking, providing660

an organized classification of methods based on technology661

exploitation, such as inertial sensors, breathing sensors, acoustic662

sensors, and cameras. Our study delves deeper into smoking663

detection technologies, focusing on detailed explanations of em-664

ployed algorithms and corresponding experimental outcomes.665

Additionally, we examined various smartphone applications de-666

signed to aid smoking cessation, emphasizing apps supported667

by rigorous scientific evaluation and approval.668

Many cyberpsychological interventions focus on altering user669

behavior. These behavioral interventions are classified using670

the Behavior Change Technique Taxonomy v1 (BCTTv1) [96].671

Without this classification, researchers cannot specify the pre-672

cise behavioral techniques applied in technology designed673

to promote health empowerment. For instance, multiple re-674

searchers or technology developers might claim to use “motiva-675

tional strategies” to encourage people to quit smoking. However,676

each of them might employ different behavioral techniques677

while using the same label. While some recent scientific studies678

demonstrate promising results, they also present challenges679

when it comes to real-life applications. For example, the re-680

search by Chen et al. cited in Reference [38] exhibits impressive681

outcomes. Nevertheless, its evaluation protocol only considers682

six movements performed by right-handed smokers in highly683

controlled conditions, rendering it incomparable to the variabil-684

ity of real-life scenarios where users engage in diverse daily685

activities in unique ways. Additionally, the system relies on two686

armbands, making it suitable only for experimental settings and687

challenging to translate into a practical product.688

B. Comparison With Previous Review689

Smoking detection technologies have evolved significantly,690

driven by advancements in hardware and software. Modern691

approaches outperform earlier methods [17], leveraging sophis-692

ticated sensors, network architectures, and autonomous systems693

with minimal reliance on external devices. Recent studies [33],694

[34] report high performance, with F1-scores exceeding 95%,695

underscoring the potential of these innovations. Our research696

builds on these developments, proposing an integrated frame- 697

work that combines wearable sensors, machine learning, and 698

mobile applications to enable real-time, adaptive interventions. 699

This comprehensive approach addresses limitations in tradi- 700

tional methods by offering continuous monitoring, personalized 701

feedback, and discreet digital health solutions. 702

Despite these advancements, significant challenges persist, 703

including limited standardization, scalability issues, and insuffi- 704

cient clinical validation. Prior reviews [64], [97], [98] primarily 705

focus on application quality, often neglecting the role of emerg- 706

ing technologies like machine learning-enhanced interventions. 707

While studies such as Zhou’s [99] explored SMS-based strate- 708

gies, the efficacy of app-based solutions remains inconsistent. 709

Our review emphasizes the need for adaptive, evidence-based 710

tools that integrate behavioral science with advanced analytics, 711

bridging the gap between experimental findings and practical 712

usability. By addressing these gaps, the proposed framework 713

represents a pivotal step toward scalable, user-centered solutions 714

that transform digital smoking cessation interventions. 715

C. Limitations 716

One notable limitation of this scoping review is that it was 717

not preregistered, which may affect the transparency and repro- 718

ducibility of the review process. Preregistration would help en- 719

sure clarity in the review’s methodology and reduce the potential 720

for bias. Also, while this review highlights promising advance- 721

ments, it notes a lack of standardization in evaluation methods 722

across studies, making direct comparisons difficult. Future re- 723

search should focus on developing robust, real-world testing 724

frameworks and fostering cross-disciplinary collaborations to 725

ensure these technologies can transition effectively from exper- 726

imental to clinical and public health settings. Furthermore, the 727

evaluation protocols used in the aforementioned scientific papers 728

have limitations, such as a small number of participants/sample 729

data, limited diversity in data collection (e.g., right/left-handed, 730

male/female, etc.), and lack of comparison with other state-of- 731

the-art methods using the same dataset and evaluation protocol. 732

Most of the described research works face these challenges. Our 733

goal is to develop a comprehensive system that incorporates the 734

most promising solutions and rigorously assesses their suitabil- 735

ity for clinical programs. While many apps depend on participant 736

self-report (e.g., diary apps), solutions like SmokeBeat, which 737

utilize wearable sensors (e.g., armbands/smartwatches), have 738

the potential to enhance existing approaches by offering auto- 739

matic feedback and objective confirmation of smoking status. 740

We advocate for increased investment from both the research 741

community and the industry in this direction. 742

D. Beyond Technical Limitations 743

Smoking detection technologies, particularly those using 744

wearable devices and AI, show promise in identifying smoking 745

events [35], [100]. However, real-life applications face several 746

challenges, such as the dynamic nature of environments, varying 747

conditions, and obstacles that affect smoking detection algo- 748

rithms [100]. Moreover, systems that perform well in controlled 749
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settings often struggle in real-life scenarios due to variabil-750

ity in gestures and environmental factors [17]. The constant751

monitoring required by these technologies may also impact752

personal autonomy [101], potentially leading to resistance and753

reduced effectiveness. Social norms around smoking can further754

influence the acceptability of these technologies [102], [103].755

The development of effective smoking cessation technologies756

is hindered by limitations in hardware, sensors, and software.757

Current wearable devices rely on indirect indicators like heart758

rate, which are influenced by factors beyond smoking, making759

the development of accurate sensors (e.g., for carbon monoxide760

or nicotine detection) essential. Moreover, sensor reliability is761

compromised by placement, movement, and environmental con-762

ditions. Software also faces challenges with user engagement,763

dropout rates, and motivation, which can be improved through764

personalization, gamification, and cognitive-behavioral therapy.765

Machine learning algorithms, while helpful, may struggle with766

data quality and bias, requiring advancements for better feed-767

back and outcomes. Overcoming these obstacles, along with768

integrating technologies into healthcare systems and address-769

ing health disparities, will be crucial for improving long-term770

cessation success. These technologies can be particularly useful771

in healthcare settings for real-time feedback and monitoring,772

supporting users in understanding their habits and empowering773

informed decisions on quitting [104].774

E. Implications and Future Perspectives775

The findings of this scoping review highlight the substantial776

potential of digital and mobile health technologies in smoking777

detection and cessation. Wearable sensors, machine learning778

models, and smartphone applications have demonstrated high779

accuracy and engagement in controlled settings [33], [34], [45],780

offering real-time feedback and personalized support. These781

tools could significantly enhance clinical smoking cessation pro-782

grams, increasing quit rates and improving user adherence [40],783

[44]. However, their real-world application faces challenges,784

including variability in user behaviors, environmental contexts,785

and device usability [34], [38], [100]. Many solutions lack rigor-786

ous scientific validation and standardized evaluations, limiting787

their generalizability and adoption [40], [45]. Overcoming these788

barriers requires a focus on inclusivity, ensuring tools address789

diverse populations, and investment in developing technologies790

that balance efficiency, usability, and effectiveness [34], [48].791

Looking ahead, integrating smoking cessation tools into792

broader health ecosystems could revolutionize efforts to combat793

tobacco addiction. Drawing parallels with advances in phys-794

iological monitoring, such as Trenta’s work on non-invasive795

heart rate variability tracking for driver safety, future smok-796

ing cessation technologies could leverage similar contactless797

measurement approaches to assess stress levels and craving798

states [45], [97], [105]. Just as wearable devices and machine799

learning can be used to track visitors’ behavior in cultural800

heritage sites, similar methodologies could be applied to monitor801

smokers’ behaviors in real-time. The use of egocentric video802

and sensor-based technologies to assess visitors’ interactions803

with cultural environments can inspire innovations for smoking804

cessation, where data from wearables or environmental sensors 805

can be analyzed to identify patterns of craving, stress, and 806

relapse, enabling more personalized interventions [106], [107]. 807

Future research should focus on real-world testing frameworks 808

and leveraging advanced technologies like AI for dynamic and 809

adaptive interventions. 810

V. CONCLUSION 811

While some solutions are promising and supported by exper- 812

imental data, many commercially available products lack the 813

reliability needed for clinical integration. Wearable systems, 814

for instance, can be affected by individual factors such as pos- 815

ture or dominant hand, leading to performance variations. Cole 816

et al. [108] addressed these issues by standardizing accelerom- 817

eter data from various smartwatch positions, which improved 818

the accuracy of pre-trained predictors like Artificial Neural Net- 819

works. Everyday use also varies widely; for example, some users 820

smoke while driving or working. Additionally, battery-powered 821

devices face challenges with limited battery life. Real-time 822

signal processing algorithms must be optimized for these con- 823

straints, as exemplified by the energy-efficient Bluetooth Low 824

Energy (BLE) protocol [109]. To overcome these challenges, 825

increased investment in the study, development, and scientific 826

evaluation of smoking cessation technology is essential to ensure 827

reliable and high-performance systems in real-life scenarios. 828
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