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ABSTRACT

Detecting fraudulent credit card transactions remains a significant challenge, due to the extreme
class imbalance in real-world data and the often subtle patterns that separate fraud from legitimate
activity. Existing research commonly attempts to address this by generating synthetic samples for
the minority class using approaches such as GANs, VAEs, or hybrid generative models. However,
these techniques, particularly when applied only to minority-class data, tend to result in overconfident
classifiers and poor latent cluster separation, ultimately limiting real-world detection performance. In
this study, we propose the Causal Prototype Attention Classifier (CPAC), an interpretable architecture
that promotes class-aware clustering and improved latent space structure through prototype-based
attention mechanisms and we will couple it with the encoder in a VAE-GAN allowing it to offer a better
cluster separation moving beyond post-hoc sample augmentation. We compared CPAC-augmented
models to traditional oversamplers, such as SMOTE, as well as to state-of-the-art generative models,
both with and without CPAC-based latent classifiers. Our results show that classifier-guided latent
shaping with CPAC delivers superior performance, achieving an F1-score of 93.14% percent and recall
of 90.18%, along with improved latent cluster separation. Further ablation studies and visualizations
provide deeper insight into the benefits and limitations of classifier-driven representation learning for
fraud detection. The codebase for this work will be available at final submission.

1 Introduction

The escalation of cyber threats has made anomaly detection central in computer security. Organizations face increasingly
sophisticated attacks, from targeted intrusions and APTs to advanced fraud schemes [1, 2, 3]. Malicious actions are
rare and often hidden within massive volumes of legitimate activity, making minority-class detection one of the
key challenges. Automated systems must identify new threats without excessive false positives, while ensuring
interpretability for compliance [4, 5, 6, 7]. As a result, research has focused on data-driven and machine learning
approaches that address class imbalance and adversarial adaptation [8]. Large-scale analyses [9] highlight that most
cyber incidents are not headline-grabbing, but sector risks differ greatly. Fraud types keep evolving, including affiliate
marketing abuse [10], and user response is shaped by liability and reimbursement differences across countries [11].
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Detecting fraud, especially in financial systems such as e-commerce settings [12] where it is rare, remains a central
challenge. Severe class imbalance limits standard classifiers, which often fail to capture rare events or sacrifice recall.
Similar problems arise in domains like deepfake detection [13, 14, 15]. New biases such as ‘impostor bias’ [16]
further complicate anomaly detection. Traditional machine learning models such as Logistic Regression [17], Random
Forest [18], and XGBoost [19] are widely used, but their effectiveness drops with heavy imbalance, often requiring
sophisticated sampling or cost-sensitive learning. Among oversampling strategies, two main families dominate:

• SMOTE-based methods [20]: Synthesize new minority samples via interpolation, balancing the training set.
They are effective but can produce redundant or overly smooth data.

• Generative models (VAEs [21], GANs [22], DMs [23, 24]): These generate diverse samples from learned
distributions, but often require significant tuning and are usually trained only on minority data, which can limit
diversity and generalization.

Deep classifiers are effective for fraud detection [25], but are often black-boxes, making interpretability difficult in
sensitive domains. Generative methods typically focus on augmenting the minority class without shaping the latent
space for better decision-making. To address these limitations, we propose the Causal Prototype Attention Classifier
(CPAC), a lightweight and interpretable architecture that uses prototype-based reasoning and feature attention for
robust classification under imbalance. Coupling CPAC (or similar classifiers) with generative model encoders such as
VAE-GAN enables latent space shaping that maximizes class separability and interpretability, outperforming SOTA
oversampling methods in both clustering and detection metrics. We validate our approach on the Kaggle Credit Card
Fraud Detection [26] dataset, benchmarking CPAC-augmented models against traditional classifiers, SMOTE, and
generative oversamplers, as well as MLP-based latent classifiers. The main contributions of this work are as follows:

• We present the CPAC, an interpretable classifier that combines prototypes and attention for reliable fraud
detection under extreme class imbalance.

• We introduce a classifier-guided latent shaping approach by attaching a classifier to the encoder of a VAE-GAN,
enforcing class-aware clustering and improving downstream classification performance.

• We included the CPAC to the encoder of the VAE-GAN to improve the results of the generic classifiers by
exploiting the inner qualities of the CPAC.

• We prove and discuss how training generative models only on fraud data proves ineffective despite the high
performances that these might lead the classifiers, causing overconfidence and poor representation of the actual
data.

This work will be structured as such: in Section 2 we present the current SOTA of the literature and all the works
that pushed and inspired ours. In Section 3 we list and explain all the techniques and models that this work uses and
presents. Later, in Section 4 we explain and analyze all the results we obtained. Section 5 explores the importance of
each component in the proposed architecture by removing them and explaining why they are critical. In Section 6 we
analyze and motivate why current SOTA might represent a liability for fraud detection, despite the good metrics and
overall performances. Ultimately, Section 7 concludes the paper with some hints at some plausible future works.

2 Related Work

Research in fraud detection and anomaly identification has evolved along several key dimensions: data-level oversam-
pling, deep generative modeling, and the development of interpretable or explainable classifiers [27]. Below, we review
foundational and recent advances in these areas, with particular focus on techniques most relevant to the design of
robust and interpretable fraud detection systems.

2.1 Data-Level Oversampling and Generative Models

Handling extreme class imbalance in fraud detection has long been addressed at the data-level. Early work introduced
SMOTE [28], with refinements and surveys over the years [29]. More recently, deep generative models, including
VAEs, GANs, and hybrid approaches have been applied to rebalance fraud datasets. For instance, Tang et al. [30]
proposed combining GANs and VAEs to simulate realistic transaction flows for anomaly detection, showing improved
detection of rare fraud behaviors. Complementary surveys summarized the landscape of GAN-based augmentation
techniques for credit card fraud detection, highlighting a diversity of architectures and strategies [31]. Despite these
advances, most generative methods focus on augmenting the minority class alone, which may lead to overconfident or
overfit classifiers and limited cluster separation in latent space.
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2.2 Prototypes, Attention, and Explainability

Beyond data augmentation, prototype-based networks provide intrinsic interpretability by comparing inputs to learned
class exemplars. ProtoPNet [32] pioneered this for image classification, while subsequent work further quantified the
visual or semantic attributes that drive similarity [33]. ProSeNet extended prototype reasoning to sequential data [34],
but all such methods must guard against mismatches between prototypes and actual data features [35]. Attention
mechanisms have likewise been adopted for per-feature weighting and have been proposed as explanation tools, though
their reliability as explanations remains debated [36, 37]. Model-agnostic post-hoc methods such as LIME [38] and
SHAP [39] also remain popular for explaining classifier decisions.

2.3 Recent Detection and Generative Oversampling Approaches

Recent years have witnessed a proliferation of generative oversampling strategies and detection methods for credit card
fraud detection task, with most approaches focused on synthesizing minority class (fraud) data to address the severe
class imbalance typical of this domain. Below, we summarize the methodological contributions and experimental setups
of recent and representative works in this area. Rakhshaninejad et al. (2021) [40] propose an ensemble method that
uses a weighted voting system algorithm to enforce and build more reliable classifiers for detecting frauds. Wang et
al. (2022) [41] proposed the use of Unrolled Generative Adversarial Networks (Unrolled GAN) for the oversampling
of fraudulent transactions. Their method, designed to overcome issues such as mode collapse in classical GANs,
generates synthetic fraud samples to augment the minority class. The Unrolled GAN is explicitly trained only on
the fraudulent samples, and the generated data is added to the original dataset before training downstream classifiers.
Their experiments demonstrate that Unrolled GAN-based oversampling improves classification results over classical
methods like SMOTE, highlighting the capacity of deep generative models to capture minority class distributions.
Ding et al. (2023) [42] present a hybrid model that combines a Variational Autoencoder (VAE) with adversarial
training (VAE-GAN) to generate synthetic fraud transactions. Their model learns the distribution of the minority class
(fraud) and is trained solely on fraudulent examples, which are then used to augment the training set for downstream
classifiers. Shi et al. (2025) [43] propose a class-imbalance-aware VAE with a transformer-based attention mechanism
(Bal-VAE-Attention). Their model employs a loss function with class-aware weights to better learn from minority
samples, and generates synthetic frauds for augmentation after training. Unlike earlier works, their results show that
employing architectural or loss-based corrections can produce more robust synthetic samples and improved downstream
detection rates. Ahmed et al. (2025) [44] propose a hybrid data sampling approach for credit card fraud detection
by combining SMOTE with Edited Nearest Neighbors (ENN) [45]. Their method, evaluated on the Kaggle credit
card dataset, demonstrates that this hybrid technique can significantly enhance the performance of ensemble models
(including RF, KNN, and AdaBoost) and a voting ensemble. By first oversampling the minority class and then using
ENN to remove noisy samples, they achieve high scores in accuracy, precision, recall, F1, and AUC, outperforming
many traditional oversamplers and showing that careful data balancing is crucial for robust fraud detection. Overall, the
prevailing trend in recent literature is to leverage generative models, typically trained only on minority class data, as
advanced oversamplers.

2.4 Gaps: Classifier-Guided Latent Shaping

Despite the progress above, no prior work in credit card fraud detection (or related tabular noise detection) has employed
a trainable classifier to explicitly shape or cluster the latent space during generative model training. Existing approaches
either use auxiliary classifiers as side objectives, focus only on data-level augmentation, or employ prototype/attention
mechanisms outside the generative learning loop. The limitation of modeling the minority class in isolation, potentially
restricting their capacity to generate synthetic frauds that are truly discriminative with respect to the global data
distribution; this motivates the approach we introduce in this work, integrating a classifier, more specifically a Causal
Prototype Attention Classifier (CPAC), directly into the latent space of a VAE-GAN, constitutes an effective method for
achieving class-aware, interpretable latent structure in the context of imbalanced anomaly detection.

3 Methodologies

As briefly stated before, this research will focus mainly on introducing the Causal Prototype Attention Classifier (CPAC)
as a new way to detect frauds and compare its performances to standard models and to introduce a supervised way to
shape the latent space to offer improved clusterization. Then we will introduce how we used a classifier to influence and
help the VAE-GAN latent space, shape a better representation of the two classes. Ultimately, it will be shown how the
CPAC classifier might be a better fit for a classification head due to its nature and its structure and its results will be
compared to other classification heads.
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3.1 Dataset and Preprocessing

We conduct our experiments on the publicly available Credit Card Fraud Detection dataset, hosted on Kaggle [26]. This
dataset, released by Worldline and the Machine Learning Group of ULB, contains 284,807 anonymized transactions
made by European cardholders in September 2013. Only 492 of these are labeled as fraudulent, resulting in an
extreme class imbalance (approximately 0.17% fraud rate). Each transaction includes 30 features, where 28 have been
transformed via principal component analysis (PCA) to protect confidentiality. The remaining two features are the
Time and Amount. The target variable Class is binary, with 1 indicating fraud and 0 otherwise. To ensure each feature
contributes uniformly to model training, we apply robust normalization to all input features. Specifically, for each
feature x, we compute its median x̃ and interquartile range IQR(x) = Q3(x)−Q1(x), and normalize using Equation 1:

xnorm =
x− x̃

IQR(x)
(1)

This transformation centers features around zero and scales them while remaining robust to outliers a crucial property in
fraud detection where anomalies naturally exhibit extreme values. For features where IQR(x) = 0, we default to a unit
divisor to prevent numerical instability. After normalization, we split the dataset into 70% training and 30% validation
sets as shown in Table 1. Stratified sampling will be used to maintain class distribution across splits.

Table 1: Dataset split by class (70% train, 30% validation).
Set Normal (0) Fraud (1) Total

Train (70%) 199,020 344 199,364
Validation (30%) 85,295 148 85,443

Total 284,315 492 284,807

3.2 Oversampling Strategies

To address the extreme class imbalance in credit card fraud detection, we implemented and compared two oversampling
strategies: SMOTE and a custom Variational Autoencoder–GAN (VAE–GAN) pipeline. Both techniques were used
to synthetically augment the minority (fraudulent) class, and the generated samples were added only to the training
set, leaving the evaluation set only with pure transactional data, emulating a real-life deploy scenario. We chose, 50,
75, 100 samples to generate for two main reasons: the first one is that using a higher number of samples could lead
classifiers to overfit, especially if the number of generated frauds is higher than the original number in the dataset and
the synthetic data is not of high quality. The second reason is that most of times, despite the increasing number of
frauds in the training set, the models inevitably plateau as we will see in the next section.

3.2.1 SMOTE-Based Oversampling

The Synthetic Minority Over-sampling Technique (SMOTE) is a widely-used baseline for addressing class imbalance.
Rather than learning the data distribution, SMOTE interpolates directly between existing minority-class samples. For
two fraud instances xi and xj , it generates a synthetic sample x̃ along the line connecting them (Equation 2):

x̃ = xi + α · (xj − xi), α ∼ U(0, 1), (2)

where α is uniformly sampled. This process, repeated with each sample’s k nearest neighbors, creates new minority
points distributed across the feature space. In our experiments, we generated 50, 75, and 100 synthetic frauds using
SMOTE and merged them into the training set. While SMOTE is simple and effective, it can produce overly smooth
or redundant samples, especially when the minority class has complex or non-linear structure. As shown in Figure 1,
SMOTE’s interpolated samples often “connect the dots” between real fraud clusters, potentially resulting in synthetic
points that are too similar to the originals. Despite remaining a strong baseline, SMOTE can be outperformed by
generative models that better capture the underlying data distribution in highly imbalanced settings.

3.2.2 VAE–GAN Oversampling

The Variational Autoencoder-Generative Adversarial Network (VAE-GAN) has emerged as a powerful approach for
generating synthetic data in imbalanced classification problems (its structure is visible in Figure 2). In accordance
with prevailing practice in fraud detection, we employ the VAE-GAN exclusively as a minority-class oversampler: it
is trained using only genuine fraud transactions, then used to synthesize new fraud-like samples that supplement the
training set. The VAE-GAN consists of three neural modules: an encoder Eϕ, a decoder Dθ, and a discriminator Cψ.
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Figure 1: PCA plots comparing frauds distribution before and after SMOTE oversampling.

The encoder maps an input x ∈ Rd through multiple hidden layers to the parameters of a multivariate Gaussian: mean
vector µ and log-variance logσ2. Using the reparameterization trick, the latent code (Equation 3) is sampled as

z = µ+ σ ⊙ ϵ, ϵ ∼ N (0, I). (3)

The decoder Dθ reconstructs the input from z, while the discriminator Cψ distinguishes real from reconstructed samples.
Training proceeds by minimizing a weighted sum of three losses:

• The VAE loss (Equation 4), which includes both a reconstruction error and a Kullback–Leibler divergence
term:

LVAE = Eqϕ(z|x)
[
∥x−Dθ(z)∥22

]
+ β ·KL(qϕ(z|x) ∥ p(z)) , (4)

where p(z) is the standard normal prior and β controls the KL penalty.
• The GAN loss (Equation 5) for the discriminator, encouraging Cψ to distinguish real fraud samples from

reconstructions:
LGAN = −Ex∼pdata [logCψ(x)]− Ex̂∼Dθ(z)[log(1− Cψ(x̂))] . (5)

• The generator adversarial loss (Equation 6), which pushes the decoder to generate samples that the discrimi-
nator cannot distinguish from real frauds:

LAdv = −Ex̂∼Dθ(z)[logCψ(x̂)] . (6)

During training, the encoder and decoder are optimized together to minimize both reconstruction and adversarial losses,
while the discriminator is trained to distinguish real from generated samples. Early stopping and validation are used to
ensure generalization. After training, the decoder generates new fraud samples by sampling from the learned latent
distribution, augmenting the training set for subsequent classification. This VAE-GAN-based oversampling is widely
used for its ability to produce more realistic and varied fraud examples than simpler interpolation techniques like
SMOTE. In our experiments, we generated and merged 50, 75 and 100 synthetic fraud samples into the training data.
However, as illustrated in Figure 3, such oversampling often concentrates the synthetic data in a narrow region of latent
space, which can make downstream classifiers either overconfident or poorly calibrated, and limits cluster separation.
This limitation provides the motivation for our classifier-guided methods.

Figure 2: Diagram portraying the structure of the VAE-GAN.
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Figure 3: PCA plots comparing frauds distribution before and after VAE-GAN oversampling.

3.2.3 SMOTE vs VAE-GAN Oversampling

The fundamental difference between SMOTE and VAE–GAN oversampling lies in how synthetic minority-class
examples are generated and distributed. SMOTE creates new samples by interpolating between real frauds and their
nearest neighbors, filling gaps and uniformly spreading synthetic points within known clusters. While easy to use and
computationally light, SMOTE may also generate borderline samples that overlap with the majority class. In contrast,
VAE–GAN learns a latent representation and generates new frauds by sampling from a global latent prior, which often
leads to denser clustering around the main fraud mode but can miss peripheral fraud patterns. VAE–GAN models
require more careful design and tuning, but can create more realistic, nonlinear samples that better reflect complex
feature relationships. Therefore, SMOTE is suited for quick and broad coverage of known minority regions, whereas
VAE–GAN offers more expressive synthetic data at the cost of increased complexity and training effort. The choice
ultimately depends on the application’s requirements and available resources.

3.3 Baseline Classifiers

To benchmark the performance of our generative and prototype-based approaches, we evaluated three standard
classifiers widely used in fraud detection: Logistic Regression, Random Forest, and XGBoost. These models provide
strong baselines due to their interpretability, ensemble nature, and ability to handle imbalanced data with appropriate
modifications. To assess the performance of all classifiers in this work, we report four standard metrics: precision, recall,
F1-score, and AUC-ROC. Each metric captures a different aspect of performance for highly imbalanced classification
problems such as fraud detection.

3.4 Causal Prototype Attention Classifier (CPAC)

The Causal Prototype Attention Classifier (CPAC) embeds interpretable, class-aware structure directly into a lightweight
neural module. Given an input x ∈ Rd, CPAC learns two prototype vectors (Equation 7)

p0, p1 ∈ Rd (7)

representing the centroids of the non-fraud and fraud classes. An attention network (Equation 8)

w = Att(x) = σ
(
W2 ReLU(W1x+ b1) + b2

)
∈ (0, 1)d (8)

where x ∈ Rd is the latent input, W1 and W2 are learnable weight matrices, b1 and b2 are biases, ReLU is the rectified
linear unit, and σ is the sigmoid function. The output w ∈ (0, 1)d is a per-feature attention mask. It produces a
per-feature mask highlighting dimensions most predictive of fraud. A learnable scale α > 0 adjusts sensitivity, and we
compute weighted squared distances (Equation 9).

6
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dc(x) = α

d∑
i=1

wi
(
xi − pc,i

)2
, c ∈ {0, 1}. (9)

where wi is the i-th element of the attention vector w, xi is the i-th feature of the latent vector x, pc,i is the i-th
coordinate of the prototype for class c (c = 0 for non-fraud, c = 1 for fraud), α is a learnable scaling factor, and d is the
latent dimensionality.

Interpreting negative distances as logits (Equation 10),

ℓ(x) =

[
−d0(x)
−d1(x)

]
=⇒ ŷ = softmax

(
ℓ(x)

)
1
, (10)

where d0(x) and d1(x) are the weighted distances to the non-fraud and fraud prototypes, respectively, ℓ(x) is the vector
of negative distances used as logits, and softmax(·)1 denotes the softmax probability for class 1 (fraud). This yields the
predicted fraud probability ŷ ∈ (0, 1).

The term “causal” here is used loosely to suggest that the attention weights may help highlight which latent features
have a higher impact on the outcome. Its structure can be visualised in Figure 4.

3.4.1 Training Loss

To counter the extreme imbalance, we adopt the Focal Loss [46], which adds two hyperparameters (Equation 11), αFL

and γ to the standard binary cross-entropy:

LFL(y, ŷ) = − αFL (1− ŷ)γ y log ŷ

− (1− αFL) ŷ
γ (1− y) log(1− ŷ) (11)

Where:

• αFL ∈ [0, 1] balances the importance of the two classes. We set αFL = 0.95 to give more weight to the
minority (fraud) class.

• γ ≥ 0 is the focusing parameter. When γ = 0, LFL reduces to ordinary cross-entropy. As γ grows, well-
classified examples (where ŷ is close to the true label) incur much smaller loss, forcing the model to concentrate
on harder, often minority-class cases. We performed a grid search for the most optimal values for αFL and γ
and we found out that the best results are obtained with 0.95 and 2.0 respectively.

By tuning αFL and γ, Focal Loss both re-weights the underrepresented class and focuses learning on its most difficult
examples, which is crucial in fraud detection. Model selection uses a composite score (Equation 12):

S = 0.50Precision + 0.50Recall (12)

on the validation set. We checkpoint the CPAC weights whenever S improves, and invoke early-stopping after p epochs
without gain.

Figure 4: Architecture of the CPAC model. Each input is compared to class prototypes using an attention-weighted
distance, followed by softmax scoring.
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3.5 Adaptive Threshold Selection via Differentiable Agent

To improve classification under class imbalance, we introduce a differentiable agent that adaptively learns the optimal
classification threshold τ∗ for maximizing the F1 score. Instead of using the default τ = 0.5, we parameterize the
threshold as a scalar θ, mapping it to τ = σ(θ) (where σ is the sigmoid function) so that τ lies in (0,1). For each sample
i, with predicted probability pi and ground truth yi ∈ {0, 1}, the agent approximates a hard threshold with a smooth
sigmoid function (Equation 13):

ŷi = σ
(
β(pi − τ)

)
, (13)

where ŷi is the soft binary prediction for sample i, pi is the predicted probability, τ is the learned threshold, and β
controls the sharpness of the sigmoid (making the function step-like). The loss for optimizing the threshold is given by
Equation 14:

L =
1

N

N∑
i=1

(ŷi − yi)
2
, (14)

where N is the batch size, ŷi is the soft prediction, and yi is the true binary label. By minimizing this loss via gradient
descent and monitoring validation F1, the agent effectively learns an optimal threshold suited to the classifier’s output
probabilities. This method consistently yielded improved F1 scores, often with a learned threshold above 0.7, especially
when paired with classifiers such as CPAC or those using VAE–GAN encoders.

3.6 VAE-GAN with Classification Heads

Most state-of-the-art techniques [41, 42, 43], train the generative model on only the fraud (minority) class. This classical
approach has a crucial limitation: it fails to expose the model to the characteristics of non-fraudulent (majority) data,
resulting in a generator that can merely interpolate among known frauds, often producing synthetic samples that are
near-duplicates, lacking true discriminative power. The latent space learned in such a setup is inevitably narrow and
uninformative about what actually distinguishes fraud from normality. In contrast, our approach is fundamentally
different. We jointly train the VAE-GAN with a classification head on the full dataset, even though the generative (VAE-
GAN) component is optimized only on the minority class. The critical distinction is that the encoder, which is shared
between the generator and the classifier head, receives supervised feedback from both classes via the classification
objective. This means that the latent space, as learned by the encoder, encodes information about the entire data
distribution,both fraud and non-fraud. This approach fundamentally differs from simply training on the minority class.
The VAE-GAN and classifier pipeline is fully aware of both classes, since the encoder’s parameters are influenced
by the generative loss applied to fraud samples and the classification loss computed over the entire dataset. Focusing
the generative loss on the minority class is a deliberate choice that enables the decoder to specialize in high-fidelity,
targeted synthesis of frauds. At the same time, the classifier head continuously regularizes the encoder, ensuring that it
organizes the latent space to distinguish between both fraud and non-fraud classes. As a result, the latent space does not
lose information about the normal class; rather, it is shaped to maximize class discrimination. The encoder integrates
the objectives of both components, while the decoder utilizes this enriched representation to generate synthetic frauds
that are not only realistic but also truly distinct within the broader data context. Thus, although the generative focus is
on the minority class, the overall supervision ensures that the synthetic samples are robust, generalizable, and valuable
for distinguishing between classes.

3.6.1 Classifier Heads (MLP Variants)

We consider three multilayer perceptron (MLP) heads, as shown in Figure 5, of increasing complexity, each implement-
ing a function hθ : Rd → [0, 1], with d = 2 in our experiments:

1. MLPHead1: One hidden layer with 32 units (ReLU), output through a sigmoid (Equation 15):

h1(z) = σ (W2 ReLU(W1z + b1) + b2) (15)

where W1 ∈ R32×2, b1 ∈ R32, W2 ∈ R1×32, b2 ∈ R.
2. MLPHead2: One hidden layer with 64 units, batch normalization, dropout (p = 0.2), ReLU and sigmoid

(Equation 16):
h2(z) = σ

(
W2 Dropout

(
ReLU(BN(W1z + b1))

)
+ b2

)
(16)

with W1 ∈ R64×2, b1 ∈ R64, W2 ∈ R1×64, b2 ∈ R.

8
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3. MLPHead3: Two hidden layers with 128 and 64 units (ReLU), output through a sigmoid (Equation 17):

h3(z) = σ (W3 ReLU(W2 ReLU(W1z + b1) + b2) + b3) (17)

where W1 ∈ R128×2, b1 ∈ R128, W2 ∈ R64×128, b2 ∈ R64, W3 ∈ R1×64, b3 ∈ R.

These structures will all be tested and evaluated as potential heads for our encoder.

MLPHead1
32

z1

z2
ŷ

MLPHead2
64

z1

z2
ŷ

MLPHead3
128 64

z1

z2
ŷ

Figure 5: Architectures of the three MLP heads used for classification on the 2-dimensional latent space. Hidden units
are indicated above each hidden layer.

3.6.2 Joint Training Procedure

The model is trained in two coordinated phases at each epoch:

1. VAE-GAN update: For each mini-batch (from all classes), the encoder maps x to z, µ, log σ2, and the decoder
reconstructs xrec. The discriminator receives both x and xrec and tries to distinguish real from generated data.
The VAE-GAN is trained with the following loss (Equation 18):

LVAE−GAN = Lrecon + LKL + LGAN (18)

where Lrecon is MSE between x and xrec, LKL is the KL divergence, and LGAN is the adversarial loss for the
generator decoder.

2. Classifier head update: Using the same mini-batch, the encoder’s mean µ is passed to the classifier head hθ
to predict the label y. The head is trained with binary cross-entropy (Equation 19):

Lclf(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ), ŷ = hθ(µ) (19)

The gradient of Lclf flows back not only to the classifier head parameters θ, but also to the encoder parameters.
As a result, the encoder is explicitly encouraged to organize the latent means µ so that different classes
become more separable for the downstream classifier. This joint training guides the encoder to learn a latent
representation where fraud and non-fraud samples are more easily discriminated.

Despite all three experiments with all the MLPs (as shown in Figures 6a, 6b, 6c) clearly suggest at a slight cluster
separation, the overlap between the two classes is still significant. The first and third MLPs produces similar results
despite the different structures while the second MLP is the only one leaning into a polynomial decision boundary that
could help separating the two clusters. These results prove that we need a more powerful network capable of adapting
into the encoder logic and working on a non-linear and more complex space. Due to the big overlap between the two
classes, using this as a way to generate new frauds to train models only causes the latter to perform badly.

3.7 VAE-GAN with CPAC Head

Similarly to how we did with the MLPs, we tested how the CPAC behaves as a classification head paired with the
encoder. With the MLPs, there was a slight tendency to inner cluster separation in the encoder but the overlap was still
significant. CPAC’s structure, is very akin with the encoder, because its prototypes might offer an anchor point where
the centroid of each cluster might find its position pushing for a better separation. The training is similar to what has
already been done with the MLPs.
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(a) MLPHead1 (b) MLPHead2 (c) MLPHead3

Figure 6: PCA plots showing cluster separation in the latent space for different MLP heads.

3.7.1 Joint Training Procedure

At each training epoch, we alternate between:

1. VAE-GAN training: For each batch, the encoder Eϕ encodes x to (z, µ, log σ2), the decoder Gψ reconstructs
xrec = Gψ(z), and the discriminator Dω distinguishes x from xrec. The standard VAE-GAN loss (Equation 20)
is:

LVAE-GAN = Lrecon(x, xrec) + LKL(µ, log σ
2) + LGAN(Dω(xrec), 1) (20)

where Lrecon is mean squared error (MSE), LKL is the KL divergence, and LGAN is the adversarial loss for the
generator.

2. CPAC update: In the same batch, the encoder’s mean µ is passed to the CPAC head, which computes distances
(Equation 21) to two learnable prototypes (p0, p1) via feature-wise attention weights w:

dc = α

d∑
j=1

wj (µj − (pc)j)
2
, c ∈ {0, 1} (21)

where wj ∈ (0, 1) are attention weights (from a neural branch), and α is a learnable scaling parameter. Fraud
probability is given by Equation 22:

ŷ = Softmax(−d0,−d1) (22)

The CPAC is trained to minimize the binary cross entropy (BCE) loss. To further regularize learning, two
penalties are added:

• Scale penalty: encourages the attention scaling parameter to stay bounded (Equation 23):

Lscale = λscale · ∥α∥2 (23)

• Prototype anchoring: aligns each prototype to the centroid of its class in latent space, encouraging the
encoder to cluster samples around the correct prototype (Equation 24):

Lanchor = λanchor
(
∥p0 − µ̄0∥2 + ∥p1 − µ̄1∥2

)
(24)

where µ̄0, µ̄1 are the means of latent vectors in the current batch with y = 0 and y = 1 respectively.

The total loss (Equation 25) for CPAC becomes:

LCPAC-total = Lclf + Lscale + Lanchor (25)

and the overall optimization alternates VAE-GAN and CPAC updates. Just like we did for the Focal Loss we performed
a grid-search and found the best λscale and λanchor to be respectively 0.001 and 0.01. When using CPAC as a classification
head within our VAE-GAN architecture, we switch to binary cross entropy (BCE) loss. Just like the MLPs, the gradient
of the CPAC loss gets backpropagated to both the CPAC parameters and also to the encoder parameter. After each
epoch, we evaluate the CPAC on a held-out validation set. Early stopping is applied based on recall, conditional on
maintaining a minimum precision, as in other head experiments.
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4 Experimental Results

Given the proposed methodologies, we dwelve into all the experiments with the models and methods listed in Section 3.
First we test the CPAC against the other three classifiers and the results obtained by other works. Then, the results
obtained with the VAE-GAN with a classification head will be analysed, explored and compared to other oversampling
techniques.

4.1 Preliminary Results

Unlike MLP heads, the CPAC’s architecture and losses (especially prototype anchoring) push the encoder to organize
latent means µ into two tight, well-separated clusters, each surrounding its prototype. The attention weights w add
interpretability, highlighting which latent features are most influential for distinguishing frauds. This process results in
a latent space that is both discriminative and interpretable. As we can see on Figure 7a the CPAC was able to improve
separation creating two distinct clusters with each prototype being anchored to its cluster centroid, essentially acting
like one. There are a few misclassification which is common for an imbalanced task and a very little overlap(visible in
Figure 7b) which is caused by borderline transactions. This is the first step to a more aware encoder that knows what
actually constitutes a fraud.

(a) 2D PCA: Encoder with CPAC head. (b) 3D cluster overlap.

Figure 7: Latent space visualizations for the Encoder with CPAC head: (a) PCA, (b) 3D overlap.

4.2 Oversampling results and experiments

Now, we will cover the results obtained with the two state-of-the-art oversampling strategies [20, 21] applied to
Logistic Regression, Random Forest, XGBoost and CPAC. First they will be tested without oversampling, to asses how
oversampling can aid overall performances; then they will be tested with SMOTE oversampling and VAE-GAN.

4.2.1 No Oversampling

We tested the models on the non augmented dataset. Without augmentation, as we can see in Table 2, the Logistic
Regression achieves a relatively high Precision but low Recall, meaning that oversampling could aid its training and
boost its performances. Random Forest achieves the highest precision with a strong recall metric, suggesting that its
performances could only benefit with oversampling. XGBoost seems the most stable, achieves the highest recall and as
well as the Random Forest, its performances will only improve with an enriched dataset. The CPAC, despite being
more stable than the Logistic Regression, still struggles to reach metrics comparable to the previous two, clearly urging
for a richer dataset to help its prototypes find the right anchor point in its representation.

4.2.2 SMOTE Oversampling Performances

SMOTE oversampling with 50, 75, and 100 synthetic fraud samples led to noticeable performance improvements for all
classifiers as noticeable in Table 3, compared to training on the original imbalanced data. Random Forest consistently
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Table 2: Benchmark results on the original (non-augmented) dataset.

Model Precision (%) Recall (%) F1-score (%) AUC-ROC (%)

Logistic Regression 92.96 79.05 84.66 95.53
Random Forest 98.87 80.07 87.22 92.75
XGBoost 96.70 88.51 92.21 96.80
CPAC 87.20 73.65 79.85 95.80

achieved the highest precision, while XGBoost provided the best balance between recall and F1-score, especially at
higher levels of oversampling. This confirms XGBoost’s robustness to class imbalance with targeted augmentation.
Logistic Regression improved in precision but remained limited in recall and F1. The CPAC classifier showed strong
AUC-ROC but was outperformed by Random Forest and XGBoost on recall and F1. Overall, these results highlight that
moderate SMOTE oversampling benefits all standard classifiers, with ensemble methods maintaining a clear advantage
in fraud detection.

Table 3: Benchmark results using SMOTE oversampling with 50, 75, and 100 synthetic fraud samples.

# Samples Model Precision (%) Recall (%) F1-score (%) AUC-ROC (%)

50 Logistic Regression 92.51 82.76 87.00 95.47
50 Random Forest 98.25 87.84 92.41 93.40
50 XGBoost 95.10 87.49 90.95 94.07
50 CPAC 85.37 70.95 77.49 95.70

75 Logistic Regression 91.42 82.76 86.58 95.66
75 Random Forest 97.48 88.51 92.53 93.04
75 XGBoost 95.22 88.51 91.59 95.81
75 CPAC 86.36 77.03 81.43 94.30

100 Logistic Regression 92.45 82.42 86.76 95.54
100 Random Forest 98.25 87.84 92.41 93.38
100 XGBoost 97.06 88.17 92.15 94.58
100 CPAC 85.16 73.65 78.99 97.30

4.2.3 VAE-GAN Oversampling Performances

VAE–GAN-based oversampling, using 50, 75, and 100 synthetic fraud samples, further enhanced classifier performance
as shown in Table 4. XGBoost achieved the highest recall and F1-score across most settings, leveraging the higher-
quality synthetic data. Random Forest remained the most precise, while CPAC delivered robust recall and AUC-ROC,
particularly at 75 synthetic samples. Logistic Regression continued to underperform compared to ensemble methods.
These results demonstrate that generative oversampling with VAE–GAN yields more effective and discriminative
synthetic data than SMOTE, especially for highly imbalanced fraud detection.

Table 4: Benchmark results using a VAE–GAN oversampler with 50, 75, and 100 synthetic fraud samples.

# Samples Model Precision (%) Recall (%) F1-score (%) AUC-ROC (%)

50 Logistic Regression 92.49 80.73 85.66 93.92
50 Random Forest 98.12 85.13 90.61 93.08
50 XGBoost 96.70 88.51 92.21 96.72
50 CPAC 90.49 87.48 88.93 95.46

75 Logistic Regression 93.12 77.70 83.72 94.30
75 Random Forest 98.95 82.43 89.01 92.71
75 XGBoost 97.46 88.17 92.31 96.58
75 CPAC 91.65 88.84 90.19 95.56

100 Logistic Regression 93.05 77.36 83.45 93.70
100 Random Forest 98.95 82.43 89.01 92.70
100 XGBoost 96.70 88.51 92.21 96.20
100 CPAC 89.11 86.47 87.74 96.73

4.2.4 SMOTE vs VAE-GAN Results Observations

Comparative analysis shows that VAE–GAN-generated synthetic frauds provide greater improvements in recall and
F1-score than SMOTE, particularly for XGBoost and CPAC. SMOTE easily fills gaps within clusters but can generate
less realistic points at class boundaries. VAE–GAN, while more complex, generates realistic samples that support better
model generalization. CPAC, when paired with VAE–GAN, shows pronounced gains in recall and AUC-ROC, especially
with more synthetic samples. However, excessive oversampling can lead to plateauing or overfitting, highlighting the
need to find an optimal level of augmentation.
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4.3 VAE-GAN with CPAC Head as Oversampler

Observing Table 5 we notice how using the VAE–GAN+CPAC model to generate synthetic fraud data for downstream
classifiers, Logistic Regression remained the least robust, while overall metrics were slightly lower than previous
oversampling strategies. This is a positive indication that the generated synthetic samples are more realistic and less
likely to cause overfitting. Standard models showed improved robustness, with performance gains plateauing as the
number of synthetic samples increased. Random Forest achieved the highest precision, but XGBoost provided more
balanced and reliable performance across all metrics, making it the preferred model to pair with the VAE–GAN+CPAC
oversampler for practical fraud detection.

Table 5: Benchmark results using a VAE-GAN+CPAC oversampler with 50, 75, and 100 synthetic fraud samples.
# Samples Model Precision (%) Recall (%) F1-score (%) AUC-ROC (%)

50 Logistic Regression 92.20 79.38 84.64 93.45
50 Random Forest 98.29 88.51 92.85 93.98
50 XGBoost 96.38 90.18 92.48 96.82

75 Logistic Regression 91.47 79.72 84.62 93.29
75 Random Forest 98.27 88.17 92.63 93.94
75 XGBoost 96.38 90.17 92.48 97.07

100 Logistic Regression 92.27 79.72 84.90 92.60
100 Random Forest 98.29 88.51 92.85 93.60
100 XGBoost 96.70 88.51 92.21 96.37

4.3.1 Applying Oversampling before VAE-GAN+CPAC Training

To further improve latent space separation in the VAE-GAN+CPAC framework, we explored the effect of applying
a slight oversampling to the fraud class before pipeline training. Specifically, we employed SMOTE, as it produces
a broader spread of synthetic fraud samples across the cluster, offering a better foundation for the encoder to learn
generalizable boundaries. While it might seem counter intuitive given our claims about minority only oversampling,
in this case we need a slight "accentuation" of the frauds samples defined in the overlap in order to allow the model
to detect them better and further reduce the overlap. Pre-training augmentation with VAE-GAN tended to generate
samples in a narrower region of the minority class, providing less diversity and thus limited improvement in latent
separation. Guided by previous experiments, we selected 75 SMOTE-generated samples as the optimal amount, since
further augmentation did not yield additional gains (see Figure 9). This approach visibly reduced cluster overlap in the
latent space (Figures 8a, 8b) and improved overall model performance. Thus, SMOTE-based pre-training oversampling
proved more effective than VAE-GAN augmentation in this context, with 75 synthetic samples offering the best balance
between diversity and separation.

4.3.2 Results Obtained with Pre-Training Oversampled VAE-GAN+CPAC

In these experiments, we assessed the effect of applying SMOTE-based oversampling to the minority class before
training the VAE-GAN+CPAC pipeline. As shown in Table 6, the performance improvements over the standard
VAE-GAN+CPAC pipeline (Table 5) are modest, with only slight gains in F1-score and AUC-ROC, particularly for
XGBoost. This suggests that VAE-GAN+CPAC is already effective at modelling and separating the latent space for
fraud detection without pre-training augmentation. Nonetheless, pre-training oversampling provides a qualitative
benefit by further clarifying class boundaries in the latent space, as evident in our cluster visualizations. Overall, this
configuration offers a practical advantage, producing clearer latent representations that support downstream classifiers
and reinforcing the robustness of the VAE-GAN+CPAC approach.

Table 6: Benchmark results using a pre-training oversampled VAE–GAN+CPAC oversampler with 50, 75, and 100
synthetic fraud samples.

# Samples Model Precision (%) Recall (%) F1-score (%) AUC-ROC (%)

50 Logistic Regression 91.55 80.06 84.88 93.33
50 Random Forest 98.27 88.17 92.63 93.61
50 XGBoost 96.38 90.17 92.48 96.91

75 Logistic Regression 91.87 79.72 84.76 93.17
75 Random Forest 98.29 88.51 92.85 93.95
75 XGBoost 95.98 88.85 92.11 97.28

100 Logistic Regression 91.63 80.39 85.13 93.11
100 Random Forest 98.69 88.17 92.79 93.60
100 XGBoost 96.38 90.18 93.14 96.88
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(a) 2D PCA: CPAC head, SMOTE pre-oversampling (75 sam-
ples). (b) 3D cluster overlap: SMOTE pre-oversampling (75 samples).

Figure 8: Latent space visualizations with CPAC head and SMOTE pre-oversampling. (a) PCA, (b) 3D overlap.

Figure 9: 2D PCA plot of the cluster representation of the Encoder with CPAC head trained with SMOTE pre-
oversampling over 100 samples.

4.4 Comparison with State of the Art Approaches

To evaluate the effectiveness of our approach, we benchmarked the best model obtained in this work (XGBoost)
trained with pre-training oversampled VAE-GAN+CPAC data against recent state-of-the-art methods [42, 43, 44]. We
conducted these experiments on these works instead of others listed in Section 2 because they are more recent. Since
the code for the selected works is not available we reproduced their classification settings at the best of our abilities
and accordingly to the information given; Ding et al. [42] uses an XGBoost as a baseline classifier just like us, so the
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reported results of our models reflects theirs with our generated dataset proving that our method greatly improves the
performances. Shi et al. [43] uses a multi-head attention classifier in their generative pipeline to directly classify the
samples reporting perfect metrics, so, we took just the classifier to test with our generated data. Ahmed et al. [44] uses
a voting ensemble classification method that comprises a Random Forest Classifier, AdaBoost Classifier and KNN,
similary reporting perfect metrics. The Table 7 reports the evaluation results of each method compared to ours with
their relative setup: Shi et al. uses a 75/25 split for the dataset and balances the training set so that the minority class
reaches the same number of the majority class. Ahmed et al. uses a 80/20 split and balances the training set as well.
We ran both tests and compared the results with each method and our XGBoost outperforms in every metric. Table 8
reports the results obtained with our setup (70/30 split and only 100 generated samples in the training set) and even in
this instance our model outperforms the other proposed methodologies. The main difference between our proposed
method of training and the related works’s is that we do not balance the training set because we believe that the models
can only benefit from learning an extreme imbalanced distribution during training, adapting it to real world applications
even appropriately.

Table 7: Benchmark XGBoost evaluation performances trained with pre-training oversampled VAE-GAN+CPAC data,
compared to selected recent works with their setup and splits.

Work Precision (%) Recall (%) F1-score (%) AUC-ROC (%)

Shi et al. [43] (2025) 79.50 78.86 79.18 97.56
Ours 97.58 90.24 93.60 97.83

Ahmed et al. [44] (2025) 93.75 76.53 84.27 97.37
Ours 95.44 90.81 93.00 98.10

Table 8: Benchmark XGBoost evaluation performances trained with pre-training oversampled VAE-GAN+CPAC data
at 100 samples, compared to selected recent works with our setup.

Work Precision (%) Recall (%) F1-score (%) AUC-ROC (%)

Shi et al. [43] (2025) 78.76 77.70 78.23 97.56
Ours 96.38 90.18 93.14 96.88

Ahmed et al. [44] (2025) 94.59 70.95 81.08 96.29
Ours 96.38 90.18 93.14 96.88

5 Ablation Study

In order to establish the relevance of each component in our method, we systematically analyze the contribution of
each key component in our VAE-GAN+CPAC architecture. By selectively removing or disabling certain elements,
we demonstrate that every part of the model is essential for achieving discriminative and robust latent representations,
particularly in the context of extreme class imbalance.

5.1 Effect of Removing the CPAC Head

To evaluate the impact of the CPAC head, we trained the VAE-GAN with the same settings as our main pipeline,
but without the CPAC head. In this configuration, the encoder is updated only via generative objectives, with no
explicit supervision guiding the latent space. Our results show that (as shown in Figure 10), without the classifier, the
latent representations of fraud and normal transactions remain heavily overlapped, making downstream classification
significantly less accurate. This experiment confirms that the CPAC supervision is crucial for inducing clear separation
between classes and for shaping the latent space in a way that supports reliable detection.

5.2 Effect of Removing the Attention Mechanism from CPAC

The ablation in Figure 11 illustrates the effect of disabling the attention mechanism in the Causal Prototype Attention
Classifier (CPAC), reducing it to a pure prototype-based classifier. Without feature-wise attention, each latent dimension
is weighted equally when computing distances to the class prototypes. The resulting latent space is visibly less
expressive: data points for both normal and fraud classes collapse along a near-linear manifold, with limited separation
between the classes and their prototypes. This collapse indicates that the model is unable to adaptively emphasize
the most discriminative latent features, leading to suboptimal cluster separation and reduced interpretability. Both
class prototypes tend to be positioned close to the respective cluster means, but the lack of per-dimension weighting
prevents effective partitioning of ambiguous or borderline samples. As a result, the discriminative power of the model
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Figure 10: 2D PCA plot of the cluster representation of the Encoder without CPAC.

is noticeably diminished compared to the full CPAC, where the attention mechanism enables more nuanced, non-linear
separation of minority-class samples.

Figure 11: 2D PCA plot of the cluster representation of the Encoder of VAEGAN+CPAC without the attention
mechanism.

5.3 Effect of Removing the Prototypes from CPAC

Figure 12 shows the latent space organization when the CPAC architecture is ablated to remove its prototype mechanism,
leaving only the attention branch. In this setting, class discrimination relies exclusively on feature-wise weighting,
with no explicit anchoring to learned class prototypes. The resulting latent representations display a pronounced
collapse along a narrow, near-linear manifold, with both normal and fraud samples largely overlapping. The absence of
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prototypes deprives the classifier of distinct, class-specific anchors in the latent space, severely restricting its ability
to drive separation between classes. Although the attention branch allows the model to adaptively weight latent
features, this alone proves insufficient for robust clustering, especially in the presence of extreme class imbalance.
Consequently, the discriminative structure of the latent space deteriorates, making class boundaries ambiguous and
reducing interpretability.

Figure 12: 2D PCA plot of the cluster representation of the Encoder of VAEGAN+CPAC without prototypes.

5.4 Effect of Removing the Anchor and Scale Penalties

Figure 13 visualizes the latent space structure when the CPAC classifier is trained without the scale and anchor
regularization terms. In this setting, both the attention mechanism and learnable class prototypes remain active, but the
model no longer receives explicit constraints on the spread and positioning of prototypes with respect to the cluster
means. The resulting latent representations maintain a moderate level of separation between normal and fraud clusters,
with prototypes positioned near the centers of their respective class distributions. However, the boundaries between
clusters are less crisp than in the fully regularized setting, and the spread of both clusters along the main latent direction
increases. The absence of scale and anchor penalties allows prototypes to drift from the empirical cluster centers and can
result in more diffuse class boundaries, reducing both interpretability and the sharpness of latent cluster assignments.

5.5 Effect of Using Focal Loss for the CPAC

To further explore these ablations, we trained the VAE-GAN+CPAC pipeline using Focal Loss in place of standard
binary cross-entropy as a loss function for the CPAC. As shown in Figure 14a, this modification results in a more
distinct and well-separated clustering of fraud (minority) and normal (majority) transactions in the latent space, with
prototypes more cleanly anchoring their respective clusters. The 3D latent visualization (Figure 14b) further confirms
improved class-wise separation and greater dispersion of the minority class, compared to previous experiments using
BCE (see Section 4). Despite this evident structural improvement, Table 9 reveals a slight decrease in downstream
classification metrics across all evaluated classifiers and augmentation regimes. For instance, with 100 synthetic fraud
samples, F1-scores for XGBoost and Random Forest remain above 92%, but are marginally lower than those achieved
with BCE-based training. This modest drop in quantitative performance can be attributed to the nature of Focal Loss:
by prioritizing hard-to-classify minority samples, it encourages the model to push fraud examples away from the
decision boundary, at the expense of global average accuracy and sometimes increased variability in the majority class
predictions.
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Figure 13: 2D PCA plot of the cluster representation of the Encoder of VAEGAN+CPAC without scale and anchor
penalties.

(a) 2D PCA plot of the cluster representation of the Encoder of
VAEGAN+CPAC using Focal Loss for CPAC.

(b) 3D plot visualisation of the overlap for the Encoder of VAE-
GAN+CPAC using Focal Loss for CPAC.

Figure 14: Latent space visualizations for VAE-GAN+CPAC using Focal Loss: (a) 2D PCA plot; (b) 3D overlap
visualization.

6 Discussion: Rethinking Oversampling in Fraud Detection

Despite significant advances in generative oversampling, most notably with SMOTE and VAE-GAN variants, most
current state-of-the-art approaches in credit card fraud detection adopt a common strategy: training oversamplers
exclusively on the minority (fraud) class. This “minority-only” paradigm is widespread, underpinned by the rationale
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Table 9: Benchmark results using VAE–GAN+CPAC oversampler with Focal Loss with 50, 75, and 100 synthetic fraud
samples.

# Samples Model Precision (%) Recall (%) F1-score (%) AUC-ROC (%)

50 Logistic Regression 91.31 79.04 84.10 93.29
50 Random Forest 98.27 88.17 92.63 93.95
50 XGBoost 96.32 88.51 92.05 96.35

75 Logistic Regression 92.54 79.05 84.52 92.57
75 Random Forest 98.27 88.17 92.63 93.92
75 XGBoost 97.14 89.19 92.79 96.64

100 Logistic Regression 92.27 79.72 84.90 92.96
100 Random Forest 98.29 88.51 92.85 93.59
100 XGBoost 97.06 88.17 92.15 97.35

that a focused model can better capture rare fraudulent patterns and help rebalance the dataset. However, our results
suggest that this strategy may have important limitations when applied to real-world fraud detection. Training an
oversampler solely on fraud data risks generating synthetic samples that closely mimic observed frauds, rather than
learning the nuanced differences between normal and fraudulent activity. As a result, such generated data may
reflect interpolations within the minority class, lacking the true discriminative boundaries that are critical for effective
classification. Deep and more complex classifiers rather than standard ones trained on these oversampled datasets often
display overly optimistic metrics, sometimes failing to generalize robustly to new, unseen data or even overfitting even
with few generated samples; simpler and classic classification approaches like the ones we used in this work struggle to
improve their metrics especially in term of recall given the similarity between the synthetic frauds and the real ones.
Both SMOTE and vanilla VAE–GAN oversamplers succeed in enriching the minority class and boosting downstream
classifier scores. However, SMOTE’s impressive precision and recall are largely artifacts of its linear interpolation,
which generates highly similar fraud examples and trains classifiers to be overconfident within a narrow region of feature
space. The unsupervised VAE–GAN, while producing more realistic fraud instances, still suffers from overconfidence
and mode collapse, generating synthetic cases that closely mimic the original frauds, limiting generalization. When
applying our CPAC classifier to these augmented datasets, we confirm a shared limitation: traditional oversamplers
simply replicate, rather than expand, the fraud distribution. In contrast, our proposed VAE-GAN+CPAC pipeline is
designed to address these limitations. By training on the entire dataset, including both fraud and normal transactions,
and integrating a CPAC head to provide explicit, supervised class information, our approach encourages the encoder
to structure its latent space to distinguish fraud from non-fraud. This design is not simply an auxiliary feature, but a
central objective of the model: the classifier head directly shapes the latent representations so that generated synthetic
frauds meaningfully reflect the learned class boundaries. During inference, only the minority samples are generated, but
the key insight is that the model’s holistic training allows it to create more realistic and discriminative synthetic data.
This approach yields several practical advantages, as reflected in our benchmarks:

• Reduced Overfitting and Overconfidence: Models trained with our VAE-GAN+CPAC-generated frauds
exhibit more stable and realistic performance, avoiding the inflated precision or recall sometimes observed
with traditional oversamplers.

• Improved Generalization: The modest drop in certain metrics compared to some SOTA methods is, in fact,
evidence of better generalization. Our synthetic frauds help downstream classifiers learn the true structure of
the data, rather than simply memorizing training examples.

• No Plateau Effect: While standard oversamplers quickly reach a performance plateau or even degrade as
more synthetic samples are added, our approach enables incremental improvements until larger sample sizes
begin to induce overfitting, as expected.

• Cluster Separation and Interpretability: The explicit supervision provided by CPAC results in clearer sepa-
ration between fraud and non-fraud clusters in latent space, facilitating interpretability and model transparency.

A key insight is that fraud can only be understood in the context of normal transactions, its definition is inherently
relational. Oversamplers that ignore this context may generate synthetic data that resides within the convex hull of
observed frauds, without sufficiently capturing the critical distinctions needed for robust classification. This can result
in models that are prone to memorization, rather than effective discrimination.

6.1 Our Contribution

By training the VAE-GAN+CPAC on the full dataset and using the CPAC head to guide the latent representation,
we bridge the gap between oversampling and supervised discriminative learning. The synthetic frauds produced by
our approach are not naive copies, but instead reflect meaningful, learned differences between classes. This allows
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downstream classifiers, particularly XGBoost in our experiments, to achieve strong, generalizable performance, even
under extreme class imbalance. In summary, our findings support the view that the field would benefit from moving
beyond the traditional minority-only oversampling paradigm toward more context-aware, discriminative approaches.
Our VAE-GAN+CPAC pipeline offers a principled step in this direction.

7 Conclusions and Future Works

This work has demonstrated the limitations of minority-class-only oversampling for fraud detection and highlighted
the benefits of classifier-guided, class-aware latent shaping using the Causal Prototype Attention Classifier (CPAC)
within a VAE-GAN framework. Our results show that relying solely on synthetic augmentation of the minority class
can lead to overconfident, poorly generalized models, whereas supervised feedback and prototype-driven clustering
provide more meaningful separation and robust detection performance, as reflected in improved F1-score, recall, and
AUC. The CPAC approach offers unique interpretability and flexibility, allowing both effective visualization and strong
performance under extreme class imbalance. These findings advocate for a shift away from traditional oversampling
techniques towards architectures that explicitly leverage class structure, supervised objectives, and interpretability.
Looking ahead, there are several promising directions for advancing this line of research. Deeper or more complex
neural classifiers, either as standalone detectors or as encoder heads, could potentially capture more nuanced fraud
patterns. The integration of denoising strategies, such as Denoising Autoencoders, may further enhance confidence
and reduce latent overlap. Broader validation across other imbalanced noise detection tasks and domains, as well as
the development of richer, more transparent explanation methods, represent important next steps. Finally, exploring
alternative strategies for latent space shaping, such as contrastive or manifold-regularized objectives, may yield further
gains, especially in low-label or highly imbalanced settings. Overall, our approach not only advances performance
metrics but also addresses the critical needs of interpretability, reliability, and resilience. While focused on credit card
fraud, the proposed methods and insights generalize to a wide range of anomaly detection challenges, paving the way
for more robust and trustworthy machine learning systems.
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